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OUTLINE

⇒ Motivation. Dipole model of DIS
⇒ Running coupling corrections to BK evolution

⇒ Fits to DIS inclusive structure function at small-x

⇒ Conclusions/Outlook

 Based on: 
     • JLA, N. Armesto, J.G. Milhano P. Quiroga and  C. Salgado (arXiv 1012.4408 [hep-ph]) 
     • JLA, N. Armesto, J.G. Milhano and C. Salgado (arXiv 1209.1112 [hep-ph])                  
       • JLA PRL99:262301
       • JLA and Y. Kovchegov PRD75:125021

⇒ Inclusion of heavy quarks
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⇒ Saturation: At small Bjorken-x the hadron wave function gets dense and non-
linear processes become a relevant dynamical ingredient
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⇒ To what extent are such effects present in available e+p data?
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Dipole model of DIS

Dipole cross section. 
Strong interactions and 
x-dependence are here

σdip(x, r) = 2
∫

d2bN (x, b, r)
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⇒ Dipole models including saturation describe a large amount of HERA data 
(inclusive and longitudinal structure functions, diffraction, DVCS, VM, geometric scaling..). 

⇒ They provide insight in the region “forbidden” to DGLAP (Q2<2 GeV2).
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∂N (x, r)
∂ ln(x0/x)

=
∫

d2r1 KLO(r, r1, r2) [N (x, r1) +N (x, r2)−N (x, r)−N (x, r1)N (x, r2)]

Non-linear term

⇒
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⇒ pQCD tools: The non-linear Balitsky-Kovchegov eqn. describes the small-x  evolution   
     of the dipole scattering amplitude at leading order in αs ln(1/x)

 ⇒ However,  at LL accuracy (fixed coupling) the BK equation is not compatible with 

data        

KL0(r, r1, r2) =
αs Nc

2 π2
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r2
1 r2

2
The LL kernel:

Q2
s(Y ) = Q2

0 expλY

λ =
d lnQ2

s(Y )
dY

{ Fits to HERA 
and RHIC data

LL-BK
(fixed coupling)

λ ∼ 0.2÷ 0.3 λLL ∼ 4.8 αs
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Outline  Running coupling corrections (Kovchegov-Weigert, Balitsky, Gardi et al)

Strategy: resummation of quark loops to all orders, plus 

⇒ Leading log
  (fixed coupling)

⇒ All orders in αs Nf

 

    (running coupling)

Nf −→ −6πβ

Nf −→ −6πβ
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New physical channels: quark-antiquark pairs in the final state. 
They contain UV divergencies that contribute to the running of the coupling
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∂S

∂Y
= R [S]− S [S]

⇒ Running term: R [S] =
∫

d2z K̃(r, r1, r2)
[
S(x, z)S(z, y)− S(x, y)

]

⇒ Subtraction term: S [S] =
∫

d2z1d
2z2 Ksub(x, y, z1, z2)

[
S(x,w)S(w, y)− S(x, z1)S(z2, y)

]
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y
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z
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w

w

}
} UV finite. 

UV-divergent  
Contributes to the 
running of the 
coupling 

R[S]

S[S]

Complete in αsNf Evolution  JLA-Kovchegov PRD75 125021 (07).

+ +

+ _

Two different separation schemes: Balitsky’s (BAL) and Kovchegov-Weigert’s (KW)
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  Fixed vs Running

⇒ The running of the coupling reduces the speed of the evolution down to values        
     compatible with experimental data (JLA PRL 99 262301 (07)):

∂S

∂Y
= R [S]− S [S]

λ =
d lnQ2

s(Y )
dY

λLL ≈ 4.8 αs

 LL evolution:

 DIS data:

λDIS ≈ 0.288
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⇒ Fits to inclusive DIS e+p structure functions & reduced x-section                                    

F2(x,Q2) =
Q2

4 π2 αem
(σT + σL)

⇒ x-dependence: translational invariant (no b-dependence) running coupling BK using 
Balitsky’s prescription

KBal(r, r1, r2) =
Nc αs(r2)

2 π2

[
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)]

∂N (x, r)
∂ ln(x0/x)

=
∫

d2r1 KBal(r, r1, r2) [N (x, r1) +N (x, r2)−N (x, r)−N (x, r1)N (x, r2)]

⇒ Regularization of the coupling: We freeze to a constant, αfr=0.7 in the IR:

αs(r2) =
12 π

(11 Nc − 2 Nf ) ln
(

4 C2

r2 ΛQCD

)

αs(r2) = αfr = 0.7

for r < rfr, with αs(r2
fr) ≡ αfr = 0.7

for r > rfr ΛQCD = 0.241 GeV

This work is structured as follows: Section 2 is devoted to a brief review of our theoret-
ical setup, which relies on the dipole model formulation of the e+p scattering process and
in the use of the rcBK equation to describe the small-x dynamics of the dipole scattering
amplitude. There we discuss the free parameters in the fit, together with our choice of ini-
tial conditions for the solution of the rcBK equation. The implementation of the variable
flavor number scheme for the running of the coupling as well as the infrared regularization
of the coupling are discussed in section 2.2. The experimental data included in the fits and
the numerical method devised to perform the global fits are discussed in section 3. Our
results are presented in section 4, where we first present the fits including only light quarks
in the analysis. We then include the effects of charm and beauty, finding in both cases a
good description of data. Finally, we wrap up with summary and conclusions.

2. Setup

In this section we briefly review the main ingredients needed for the calculation of the
inclusive and longitudinal DIS structure functions, which was extensively discussed in our
previous paper [25]. Neglecting the contribution from Z boson exchange, only relevant
at Q2 much larger than those considered in this work, the reduced cross section can be
expressed in terms of the inclusive, F2, and longitudinal, FL, structure functions:

σr(y, x, Q2) = F2(x,Q2)− y2

1 + (1− y)2
FL(x,Q2), (2.1)

where y = Q2/(s x) is the inelasticity variable and
√

s the center of mass collision energy.
In turn, at x# 1, the inclusive and longitudinal structure functions can be expressed as

F2(x,Q2) =
Q2

4 π2αem
(σT + σL) , (2.2)

FL(x,Q2) =
Q2

4 π2αem
σL . (2.3)

Here σT,L stands for the virtual photon-proton cross section for transverse (T ) and longi-
tudinal (L) polarization of the virtual photon. In the dipole model, valid at high energies
or small x, one writes [9, 10]:

σT,L(x,Q2) = 2
∑

f

∫ 1

0
dz

∫
db dr |Ψf

T,L(ef ,mf , z, Q2, r)|2 N (b, r, x) , (2.4)

where Ψf
T,L is the light-cone wave function for a virtual photon to fluctuate into a quark-

antiquark dipole of quark flavor f . Note that Ψf
T,L only depends on the quark flavor f

through the quark mass mf , and electric charge ef (see e.g. [11] for explicit expressions
to lowest order in αem). N (b, r, x) is the imaginary part of the dipole-target scattering
amplitude, with r the transverse dipole size and b the impact parameter of the collision.
The study of impact parameter dependence of the dipole amplitude is controlled by long-
range, non-perturvative phenomena rooted in the physics of confinement and thus is not

– 4 –
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⇒ Initial Conditions. Inspired in the GBW and MV models:

A)

B)

NGBW (r, x0 = 10−2) = 1− exp
[
−

(
r2 Q2

s0

4

)γ ]

NMV (r, x0 = 10−2) = 1− exp
[
−

(
r2 Q2

s0

4

)γ

ln
(

1
r ΛQCD

)]

Free parameters: proton saturation scale at x0=10-2,        ,  and anomalous dimension,   Q2
s0 γ

⇒ 3 (4) free parameters: Normalization,       , initial saturation scale, 

            IR parameter,        (anomalous dimension of the i.c.     )

σ0 Q2
s0

C2 γ

⇒ Experimental data: New ZEUS+H1 combined analysis (HERA), NMC (CERN-SPS) and 

E665 (Fermilab) coll.
x ≤ 10−2 0.045 < Q2 < 50 GeV2

C)

2.3 Initial conditions for the evolution

Finally, to complete all the ingredients needed for the calculation of the reduced cross
section Eq. (2.1) we need to specify the initial conditions for the rcBK evolution equation
Eq. (2.7). Similarly to our previous work we consider GBW initial conditions, inspired in
the phenomenological model of [11]:

NGBW (r, x=x0) = 1− exp

[
−

(
r2 Q2

s 0

)γ

4

]
, (2.13)

and MV initial conditions, which originate from a semiclassical calculation of multiple
rescatterings [50]:

NMV (r, x=x0) = 1− exp

[
−

(
r2 Q2

s 0

)γ

4
ln

(
1

r Λ
+ e

)]
. (2.14)

The physical meaning of the different parameters in Eqs (2.13) and (2.14) is the following:
Qs0 is the saturation scale at the largest value of x considered in the analysis, x0 = 0.01,
while γ is an additional parameter that controls the steepness of the fall-off of the dipole
amplitude with decreasing r. It should be noted that the factor Λ under the logarithm
in the MV initial conditions corresponds to the infrared cutoff of the dipole-nucleon cross
section at the level of two gluon exchange or in the semiclassical limit. Thus, it does not
need to be equal to the Λnf in the running of the coupling. However, we opt to set it equal
to Λ3.

In order to further explore the space of initial conditions we shall consider a third family
of i.c., the scaling i.c. which is generated by the evolution itself. It is a well known result
that the asymptotic solutions of the rcBK equation are universal, i.e., they are independent
of the initial conditions [22,51–53]. Moreover, such asymptotic solutions present the feature
of scaling, i.e. they do no longer depend on two kinematic variables r and Y , but rather on
a single dimensionless scale, the scaling variable τ = r Qs(Y ). In other words, the evolution
generates a universal shape for the dipole amplitude at asymptotically large rapidities

N (r, Y " 1)→ N scal(τ = r Qs(Y )). (2.15)

Since the analytic form of the universal shape N scal is not known, the implementation of
the scaling i.c. is done numerically: we solve Eq. (2.7) up to large rapidities, which we
set to be Y = 80. Then the obtained solution is rescaled by the corresponding value of
the saturation scale, i.e we replace τ = r Qs(Y ) → r Qs0 in Eq. (2.15), where Qs0 carries
again the meaning of initial saturation scale at x = x0 Thus, the scaling i.c. is essentially
a one-parameter family of solutions, the only free parameter being the initial saturation
scale.

2.4 Parameters for fits with heavy quarks

As discussed at the beginning of this section, we replace the two-dimensional integral over
impact parameter in Eq. (2.4) by a dimensionful scale σ0 which sets the normalization and
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⇒ Overall 

normalization:

tractable perturbatively. Following other works, we shall assume an average over impact
parameter through the replacement:

2
∫

db→ σ0 , (2.5)

where σ0 has the meaning of (half) the average transverse area of the quark distribution
in the transverse plane and will be one of the free parameters in the fit. Attempts to go
beyond the translational invariant approximation in the BK equation have been recently
presented in [46, 47]. Finally, we shall also include in the fits available data for the charm
contribution to the inclusive structure function F2c, which can be calculated by considering
only the charm contribution in Eqs (2.2) and (2.4). Details about the normalization and
initial conditions for F2c are given below. In order to approach safely the photoproduction
region, we shall also consider the standard kinematic shift in the definition of Bjorken-x [11]:

x̃ = x

(
1 +

4 m2
f

Q2

)
. (2.6)

The mass of the three light quarks is taken to be ml = 0.14 GeV in some cases or left as a
free fit parameter, whereas that of charm and beauty are taken to be mcharm = 1.27 GeV
and mbeauty = 4.2 GeV respectively [48].

2.1 BK equation with running coupling

The main dynamical input in this work is the rcBK equation, which corresponds to the
large-Nc limit of the full B-JIMWLK equations. It resums to all orders leading radiative
corrections in αs ln(1/x) and also a subset of the full next-to-leading order corrections [21],
namely running coupling corrections. The impact parameter independent BK equation
reads

∂N (r, x)
∂ ln(x0/x)

=
∫

dr1 Krun(r, r1, r2)

× [N (r1, x) +N (r2, x)−N (r, x)−N (r1, x)N (r2, x)] , (2.7)

with the evolution kernel including running coupling corrections given by [18]

Krun(r, r1, r2) =
Nc αs(r2)

2π2

[
r2

r2
1 r2

2

+
1
r2
1

(
αs(r2

1)
αs(r2

2)
− 1

)
+

1
r2
2

(
αs(r2

2)
αs(r2

1)
− 1

)]
, (2.8)

where r2 = r−r1 and x0 is the value of x where the evolution starts. In our case x0 = 0.01
will be the highest experimental value of x included in the fit.

2.2 Variable flavor scheme and regularization of the coupling

The coupling in the rcBK kernel Eq. (2.8) is given, for a given number of active quark
flavors nf , by

αs,nf (r2) =
4π

β0,nf ln
(

4C2

r2Λ2
nf

) , (2.9)
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kinematic shift:
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⇒ Fit results

JLA, N. Armesto, J.G. Milhano,  C. Salgado   
Phys.Rev.D80:034031,2009;

JLA, N. Armesto, J.G. Milhano,  P Quiroga 
and C. Salgado arXiv 1012.4408 [hep-ph]
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⇒ Fit results

fit χ2

d.o.f Q2
s0 σ0 γ C m2

l

GBW
a αfr = 0.7 1.226 0.241 32.357 0.971 2.46 fixed
a’ αfr = 0.7 (Λmτ ) 1.235 0.240 32.569 0.959 2.507 fixed
b αfr = 0.7 1.264 0.2633 30.325 0.968 2.246 1.74E-2
c αfr = 1 1.279 0.254 31.906 0.981 2.378 fixed
c’ αfr = 1 (Λmτ ) 1.244 0.2329 33.608 0.9612 2.451 fixed
d αfr = 1 1.248 0.239 33.761 0.980 2.656 2.212E-2

MV
e αfr = 0.7 1.171 0.165 32.895 1.135 2.52 fixed
f αfr = 0.7 1.161 0.164 32.324 1.123 2.48 1.823E-2
g αfr = 1 1.140 0.1557 33.696 1.113 2.56 fixed
h αfr = 1 1.117 0.1597 33.105 1.118 2.47 1.845E-2
h’ αfr = 1 (Λmτ ) 1.104 0.168 30.265 1.119 1.715 1.463E-2

Table 1: Parameters from fits with only light quarks to data with x ≤ 10−2 and for all available
values of Q2 ≤ 50 GeV2 for different initial conditions, fixed values of the coupling in the infrared
αfr = 0.7 and 1 and light quark masses either taken fixed ml = 0.14 GeV or left as a free parameter.
Fits a’, c’ and h’ correspond to taking the τ mass as reference scale for the running of the coupling.
Units: Q2

s0 and m2
l are in GeV2 and σ0 in mb.

both in this subsection and in the following one we will only show in the plots the results
from some selected fits, not a full survey of them. Several comments are in order:

First, all the different fits with MV or GBW initial conditions yield a good χ2/d.o.f ≤
1.28, with a best fit χ2/d.o.f = 1.104, labeled h’ in table 1, obtained with MV initial
condition, αfr = 1, and αs(mτ ) as the reference value for the running coupling. The quality
of the fits is remarkably good provided the tiny error bars in the new data on reduced cross
sections (error bars are in most cases smaller than the symbols used in the plot). In turn,
it was not possible to find any good fit to data using the scaling initial condition Eq. (2.15).
Most likely, this is due to the much faster evolution speed featured by the scaling initial
conditions, compared to the GBW or MV ones, for which pre-asymptotic effects slow down
the evolution considerably. Moreover, the MV i.c. tend to systematically yield better fits
than the GBW one. This can be taken as an indication that the semiclassical resummation
of multiple scattering underlying the MV formula is indeed a good estimate of the initial
condition.

Next, the sensitivity of the fits to non-perturbative aspects of our calculation encoded
in the parameters αfr, C, the reference scale to determine Λnf or the light quark masses ml

(which acts as an effective IR cutoff for the Ψγ∗→qq̄ wavefunction) is rather small, as shown
by the little variation of the fit parameters under changes in the latter and on whether
they are left as free fit parameters or not. In particular, the value at which the coupling is
regularized in the infrared, either 1 or 0.7 does not affect much the fit output. Also, when
the light quark mass is left as a free parameter it tends to acquire a final value very close

– 10 –

• Fits parameters are stable w.r.t to the fits to older data

NOTE: Statistical and systematic errors added in quadrature
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⇒ Including heavy quarks

• Extend the sum to heavy flavors (b and c) in the dipole model

• Allow for different parameters for the heavy quark contribution and initial conditions

• For consistency, we consider a variable flavor number scheme for the running of 
the coupling 

can be interpreted as the average transverse size of the proton. However, it is not clear
a priori whether such average area should be the same for quarks (valence or sea) and
gluons. Indeed it has been suggested that the glue distribution inside nucleons may be
located inside hot spots of small radius ∼ 0.2÷ 0.3 fm [54]. Also, data on the exponential
slope of the momentum transfer dependence of exclusive vector meson production (see [55]
and references therein) provide further support the picture of a smaller effective area for
gluons than for valence quarks. Here we take as a working hypothesis the possibility that
the effective transverse size of the heavy quark distribution, which we expect to follow the
gluon one, may be different to that of light quarks. Accordingly, we introduce two different
normalization constants for the total cross section, one for charm and beauty, σheavy

0 and
other for the three light quarks, σ0:

σT,L(x,Q2) = σ0

∑

f=u,d,s

∫ 1

0
dz dr |Ψf

T,L(ef ,mf , z, Q2, r)|2N light(r, x)

+σheavy
0

∑

f=c,b

∫ 1

0
dz dr |Ψf

T,L(ef ,mf , z, Q2, r)|2N heavy(r, x) . (2.16)

As we shall discuss in section 4, such assumption is not only a physically well motivated
one, but it turns out to be necessary in order to attain a good description of data, and
also for the stability of the fits with respect to the inclusion or not of the heavy quark
contribution. Finally, the superscripts light and heavy in the dipole scattering amplitudes
in Eq. (2.16) refers to the fact that we may consider different initial values of the parameters
in the initial condition for light and heavy quarks.

2.5 Summary of the theoretical setup and free parameters

In summary, we will calculate the reduced cross section and the charm and beauty con-
tribution to the inclusive structure functions according to the dipole model under the
translational invariant approximation Eq. (2.16). The small-x dependence is completely
described by means of the BK equation including running coupling corrections, Eqs. (2.7-
2.8), for which three different initial conditions GBW, MV and scaling are considered. All
in all, the free parameters to be fitted to experimental data are:

• σ0 : The total normalization of the cross section in Eq. (2.16).

• Q2
s 0 : The saturation scale of the proton at the highest experimental value of Bjorken-

x included in the fit, x0 = 10−2, in Eqs. (2.13) and (2.14).

• C2: The parameter relating the running of the coupling in momentum space to the
one in dipole size in Eq. (2.9).

• γ : The anomalous dimension of the initial condition for the evolution in Eqs. (2.13)
and (2.14).

The fits with heavy quarks introduce additional free parameters, σheavy
0 , Qheavy

0 and γheavy,
with physical meaning analogous to that of the corresponding parameters listed above.

– 8 –

where
β0,nf = 11− 2

3
nf . (2.10)

Here, the constant C2 under the logarithm accounts for the uncertainty inherent to the
Fourier transform from momentum space, where the original calculation of the quark part
of the β function was performed [18, 49], to coordinate space. It will be one of the free
parameters in the fits.

In both our previous analysis [25] and for the fits in subsection 4.1 only light quarks
were taken as contributing to the DIS cross section. In this case, only fluctuations of the
virtual photon wavefunction in Eq. (2.4) into dipoles of light quark flavor were included in
the calculation. Consistently, only light quark loops should be included in the calculation
of the running coupling Eq. (2.9). Thus, the number of active flavors in Eq. (2.9) is taken
to be fixed and equal to the number of light quarks nf = 3.

Since the rcBK equation is an integro-differential equation where the phase space for
all dipole sizes is explored, including arbitrarily large dipole sizes (which correspond to
emission of gluons with arbitrarily small transverse momenta), a prescription to regulate
the coupling in the infrared is needed. We freeze the coupling to two constant values
αfr = 0.7 and 1 for dipole sizes larger than the scale at which the running coupling reaches
αfr.

When heavy quark (charm and beauty) contributions are included in the calculation
of the DIS cross section, as it is the case for the fits in subsection 4.2, fluctuations of the
virtual photon wavefunction in Eq. (2.4) into dipoles of heavy quark flavor are allowed.
Accordingly, such contributions should be accounted for in the computation of the running
coupling Eq. (2.9). Thus, the number of active flavors nf in Eq. (2.9) should be set to
the number of quark flavors lighter than the momentum scale associated with the scale
r2 at which the coupling is evaluated µ2 = 4C2/r2. The setup of this variable flavor
scheme is completed by matching the branches of the coupling with adjacent nf at the
scale corresponding to the quark masses r2

! = 4C2/m2
f . For the 1-loop accuracy at which

the coupling Eq. (2.9) is evaluated, the matching condition is simply given by

αs,nf−1(r2
!) = αs,nf (r2

!) , (2.11)

which results in

Λnf−1 = (mf )
1−

β0,nf
β0,nf−1 (Λnf )

β0,nf
β0,nf−1 . (2.12)

The values of the Λnf , Λ3 in the fixed nf scheme and Λ3, Λ4, and Λ5 for variable nf are
determined by using an experimentally measured value of αs as reference. It is a well known
fact that the running of the QCD coupling evaluated to 1-loop is of insufficiently accuracy to
describe the experimental observed coupling evolution. Thus, different choices of reference
measurement will result in slightly different values for the Λnf . To take into account such
uncertainty, in some of the fits we will use as reference point the experimentally measured
value of αs at the Z0 mass, whereas in other fits the measured value of the coupling at the
τ mass will be taken as the reference scale.

– 6 –

αnf (r2) =
4π

β0,nf ln
(

4C2

r2Λ2
nf

) r2
! = 4C2/m2

f
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⇒ Fits with heavy quarks

• No constraints to b contribution from present data...
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Figure 2: Comparison of experimental data for F2c (black squares) and σrc (red squares) in
different Q2 bins with our results (cyan circles), corresponding to fit (a’) in Table 2.

conditions.

4.3 Comparison with FL

In Fig 3. we present a comparison of our results for the longitudinal structure function
FL with the available data at small-x and for different Q2 bins. The theoretical results
were obtained using the dipole parametrizations corresponding to fits (e) and (a) in Tables
1 and 2 respectively, although we have checked that all the others provide equally good
comparisons with data. The agreement with data is good, provided the relatively large
error bars in experimental data.

5. Conclusions

In this paper we have presented an analysis of the available data on the several inclusive
structure functions and reduced cross section measured in e+p collisions at small-x. This
proves the ability of the rcBK equation, the main dynamical ingredient in our approach,
to account for the x-dependence of the available data, including the high quality data on
reduced cross sections provided by the combined analysis of the H1 and ZEUS Collabora-
tions. We thus offer additional indications for the presence of non-linear saturation effects
in present data and, thereby, sharpen the CGC approach to high-energy QCD scattering as
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⇒ Fits with heavy quarks

fit χ2

d.o.f Q2
s0 σ0 γ Q2

s0c σ0c γc C m2
l

GBW
a αfr =0.7 1.269 0.2294 36.953 1.259 0.2289 18.962 0.881 4.363 fixed
a’ αfr =0.7 (Λmτ ) 1.302 0.2341 36.362 1.241 0.2249 20.380 0.919 7.858 fixed
b αfr =0.7 1.231 0.2386 35.465 1.263 0.2329 18.430 0.883 3.902 1.458E-2
c αfr =1 1.356 0.2373 35.861 1.270 0.2360 13.717 0.789 2.442 fixed
d αfr =1 1.221 0.2295 35.037 1.195 0.2274 20.262 0.924 3.725 1.351E-2

MV
e αfr =0.7 1.395 0.1673 36.032 1.355 0.1650 18.740 1.099 3.813 fixed
f αfr =0.7 1.244 0.1687 35.449 1.369 0.1417 19.066 1.035 4.079 1.445E-2
g αfr =1 1.325 0.1481 40.216 1.362 0.1378 13.577 0.914 4.850 fixed
h αfr =1 1.298 0.156 37.003 1.319 0.147 19.774 1.074 4.355 1.692E-2

Table 2: Parameters from fits including charm and beauty contributions to data with x ≤ 10−2

and and Q2 ≤ 50 GeV2 for different initial conditions and fixed values of the coupling in the infrared
αfr = 0.7 and 0.1. Light quark masses are fixed to ml = 0.14 GeV in some fits and left as a free
parameter in others. The fit a’ corresponds to taking the τ mass as reference scale for the running
of the coupling. The units: Q2

s0(c) and m2
l are GeV2, while those of σ0(c) are mb.

parameters associated to the beauty quark prevents us of carrying out a more detailed
characterization of its contribution to the data included in the fit. Thus, we assume that
the free parameters associated to heavy quarks, including the overall normalization, is the
same for charm and beauty. We have checked that such assumption has a very little effect
on the fit output by completely removing the beauty contribution to F2 and σr. However,
we finally decided to include it in the fits in order to be consistent with the variable flavor
scheme used for the running of the coupling, which allows the contribution of dynamical b

quarks to the QCD beta function.
Our fit results are shown in Table 2, and a comparison with data for σr is shown in

the right plot Fig 1. We obtain an equally good description of data as with fits with only
light quarks, as can be seen comparing the left and right plots in Fig 1. However, the
χ2/d.o.f. ! 1.4 are slightly larger than for the fits with only light quarks. This is maybe
due to what seems to be a systematic deviation between different data sets on F2c and the
charm contribution to the reduced cross section σrc, as can be observed in Fig 2, where
we compare our results with experimental data. The arguments presented before on the
stability of the fits with respect to variations in the infrared regulation of the coupling
or the reference scale to determine ΛQCD also hold in the case of fits with heavy quarks.
On the other hand, when left as a free parameter the mass of the light quark tends to
acquire a smaller value than it did in the fits with only light quarks. Concerning the
initial conditions for the evolution, they are very similar for light and heavy quarks. In
particular, the corresponding initial saturation scales, Qs0 and Qs0c take on very similar
values in all fits. However, the steepness of the initial condition encoded in the parameter
γ(c) is systematically larger for light than for heavy quarks for both GBW and MV initial

– 12 –

• Larger transverse “size” of the light contribution σlight
0 > σcharm

0

• chi2/dof improve significantly if charm data excluded in its calculation
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⇒ Fits with heavy quarks

• In both cases, i.e. only light or light+heavy quarks, a good description of FL data 
(not included in the fits) is obtained 
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Figure 3: Comparison of experimental data for FL from the H1 (full circles) and ZEUS (triangles)
collaborations with the theoretical results corresponding to a fit with only light quarks and MV i.c.
(solid line, labeled (e) in Table 1) and a fit with MV i.c. and including heavy quarks (dashed line,
labeled (a) in Table 2) .

a practical phenomenological tool. We have also shown how the inclusion of heavy quarks,
both at the level of their contribution of the QCD beta function in the running of the
coupling as well as to the total γ∗-proton cross sections can be naturally incorporated in
the dipole formalism under the assumption of a smaller size of the heavy quark effective
distribution. The dipole scattering amplitude solving the rcBK equation stemming from
the parameter sets in Tables 1 and 2 shall be publicly available in the form of numeric
Fortran routines at the website http://www-fp.usc.es/phenom/software.html.
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• Steeper than MV (i.e gamma>1) preferred by the fits are needed to describe the 
  p+p spectra measured at the LHC. kt-factorization+KKP fragmentation

NMV (r, x0 = 10−2) = 1− exp
[
−

(
r2 Q2

s0

4

)γ

ln
(

1
r ΛQCD

)]
γ = 1.119

3 kt-factorization

According to the kt-factorization formalism [14], the number of gluons produced per unit rapidity
at a transverse position R in A+B collisions is given by

dNA+B→g

dy d2pt d2R
=

1

σs

dσA+B→g

dy d2pt d2R
, (8)

where σs represents the effective interaction area and σA+B→g is the cross section for inclusive
gluon production:

dσA+B→g

dy d2pt d2R
= κ

2

CF

1

p2t

∫ pt d2kt
4

∫

d2bαs(Q)ϕ(
|pt + kt|

2
, x1; b)ϕ(

|pt − kt|
2

, x2;R− b) , (9)

with x1(2) = (pt/
√
sNN) exp(±y) and CF = (N2

c −1)/2Nc; the normalization factor κ is given below.
As noted before, we assume that the local density in each nucleus is homogenous over transverse
distances of the order of the nucleon radius RN . Thus, the b-integral in Eq. (9) yields a geometric
factor proportional to the transverse “area” of a nucleon which cancels with a similar factor implicit
in σs from Eq. (8), modulo subtleties in the definition of σs. In any case, uncertainties associated
with the overall normalization of Eq. (8) cancel in the calculation of the initial eccentricity in
Eq. (16).

The unintegrated gluon distributions (ugd’s) ϕ entering Eq. (9) are related to the dipole scat-
tering amplitude in the adjoint representation, NG, through a Fourier transform (for consistency
with the notation used in Eq. (9) we make the impact parameter dependence of the ugd’s explicit):

ϕ(k, x, b) =
CF

αs(k) (2π)3

∫

d2r e−ik·r∇2
r NG(r, Y =ln(x0/x), b) . (10)

In turn, NG is related to the quark dipole scattering amplitude that solves the rcBK equation, N ,
as follows:

NG(r, x) = 2N (r, x)−N 2(r, x) . (11)

Note that this relation entails that the saturation momentum relevant for gluon scattering is larger
than that for quark scattering by about a factor of 2.

Eqs. (10) and (9) were written originally for fixed coupling. In order to be consistent with
our treatment of the small-x evolution, we have extended them by allowing the coupling to run
with the momentum scale. The argument of the running coupling in Eq. (9) is chosen to be
Q = max{|pt + kt|/2, |pt − kt|/2}, while for the definition of the ugd Eq. (10) we take it to be
the transverse momentum itself, k. This turns out to be important in order to reproduce the
centrality dependence of charged particle multiplicities at RHIC, which are otherwise too flat for
small Npart. However, the results are not very sensitive to the particular choice of scale because
ϕ → 0 as k2 → 0 due to the saturation of N (r) at large dipole sizes r. In principle, one could
improve on this educated ansatz by using the results of [15] where running coupling corrections to
inclusive gluon production have been studied. Most importantly, the x-dependence of the dipole
scattering amplitude obtained by solving the rcBK equation encodes all the collision energy and
rapidity dependence of the gluon production formula Eq. (9).

With the ugd as defined above, the normalization factor κ (introduced in the kt-factorization
formula (9) above) required to fit the charged particle multiplicity at RHIC energy turns out to
be κ % 7.1. It lumps together higher-order corrections, sea-quark contributions, parton → hadron
conversion factors, a nucleon geometry factor, and so on. The results shown below were obtained
under the assumption that this normalization factor is the same for both dEt/dy and dN/dy, and
that it is energy independent.

4

unintegrated gluon 
distributions

3 kt-factorization

According to the kt-factorization formalism [14], the number of gluons produced per unit rapidity
at a transverse position R in A+B collisions is given by

dNA+B→g

dy d2pt d2R
=

1

σs

dσA+B→g

dy d2pt d2R
, (8)

where σs represents the effective interaction area and σA+B→g is the cross section for inclusive
gluon production:

dσA+B→g

dy d2pt d2R
= K

2

CF

1

p2t

∫ pt d2kt
4

∫
d2bαs(Q)ϕ(

|pt + kt|
2

, x1; b)ϕ(
|pt − kt|

2
, x2;R− b) , (9)

with x1(2) = (pt/
√
sNN) exp(±y) and CF = (N2

c − 1)/2Nc. As noted before, we assume that
the local density in each nucleus is homogenous over transverse distances of the order of the
nucleon radius RN . Thus, the b-integral in Eq. (9) yields a geometric factor proportional to the
transverse “area” of a nucleon which cancels with a similar factor implicit in σs from Eq. (8),
modulo subtleties in the definition of σs.

The unintegrated gluon distributions (ugd’s) ϕ entering Eq. (9) are related to the dipole scat-
tering amplitude in the adjoint representation, NG, through a Fourier transform (for consistency
with the notation used in Eq. (9) we make the impact parameter dependence of the ugd’s explicit):

ϕ(k, x, b) =
CF

αs(k) (2π)3

∫
d2r e−ik·r ∇2

r NG(r, Y =ln(x0/x), b) . (10)

In turn, NG is related to the quark dipole scattering amplitude that solves the rcBK equation, N ,
as follows:

NG(r, x) = 2N (r, x)−N 2(r, x) . (11)

Note that this relation entails that the saturation momentum relevant for gluon scattering is larger
than that for quark scattering by about a factor of 2.

Eqs. (10) and (9) were written originally for fixed coupling. In order to be consistent with
our treatment of the small-x evolution, we have extended them by allowing the coupling to run
with the momentum scale. The argument of the running coupling in Eq. (9) is chosen to be
Q = max{|pt + kt|/2, |pt − kt|/2}, while for the definition of the ugd Eq. (10) we take it to be
the transverse momentum itself, k. This turns out to be important in order to reproduce the
centrality dependence of charged particle multiplicities at RHIC, which are otherwise too flat for
small Npart. However, the results are not very sensitive to the particular choice of scale because
ϕ → 0 as k2 → 0 due to the saturation of N (r) at large dipole sizes r. In principle, one could
improve on this educated ansatz by using the results of [15] where running coupling corrections to
inclusive gluon production have been studied. Most importantly, the x-dependence of the dipole
scattering amplitude obtained by solving the rcBK equation encodes all the collision energy and
rapidity dependence of the gluon production formula Eq. (9).

The normalization factor K % 2 introduced in the kt-factorization formula (9) above is fixed by
the charged particle transverse momentum distribution in p+p collisions at 7 TeV, see below. It
lumps together higher-order corrections, sea-quark contributions, a nucleon geometry factor, and
so on. We apply an additional “gluon multiplication factor” κg % 5 when computing p⊥-integrated
yields (see below) in heavy-ion collisions but not for the transverse energy dEt/dy or for high-pt
hadron production in p+p from fragmenting hard gluons.

In fig. 1 we plot the ugd for three different initial MV saturation scales at x = 3 · 10−4 versus
transverse momentum. The ugd corresponding to a single nucleon peaks at about kt % 1 GeV. The
ugds for larger Q2

s0 illustrate the shift predicted for a 6-nucleon and 12-nucleon target, respectively.
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Figure 3: Centrality dependence of the charged particle multiplicity at midrapidity for Pb+Pb
collisions at

√
s = 2.76 TeV. Alice data from ref. [18].

every point in the transverse plane, each of them evolved locally to higher energies. The average
over different configurations is performed after the evolution, and not before, as implicitly done in
[12]. Thus we interpret these two different results as an indication that the average over nuclear
geometry does not commute with the evolution.
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Figure 4: Transverse momentum distribution of charged particles at η = 0 for p+p collisions at√
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In Fig. 4 we show the transverse momentum distribution of charged particles for p+p collisions
at

√
s = 7 TeV. For the range of p⊥ shown in the figure, particle production is sensitive to LC

momentum fractions well below our assumed starting point of x0 = 0.01. The uGD derived from
MV model initial conditions is clearly too “hard” and predicts an incorrect slope. The new uGD
obtained from the MVγ initial condition corrects this deficiency and provides a good description
of the CMS data in the small-x, semi-hard regime. This illustrates the power of LHC to constrain
small-x physics. Also, we have used this observable to fix the genuine “K-factor” to K = 2 (MVγ

i.c.) or K = 1.5 (MV i.c.), respectively.
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⇒ Delineating the saturation boundary (G Milhano, P. Quiroga and J Rojo):

• NLO DGLAP analysis exhibit deviations after systematic exclusion of low-Q2 
regions (“saturation cuts”) from the fits (Caola, Forte, Rojo)

• Analogous exercise with rcBK: 
      - Systematically exclude high-x regions from the fits (x>xcut>x0=10-2)
      - Compare with fits including the  region (x>xcut=10-2)    

xcut x0

18



 0.9

 0.95

 1

 1.05

 1.1

10
-9
10

-8
10

-7
10

-6
10

-5
10

-4
10

-3
10

-2

F
t(x

c
u
ti ) /F

t(n
o

 x
c
u
t)

x

Q
2
=0.5 GeV

2

xcut
i
=5*10

-3

xcut
i
=10

-3

xcut
i
=5*10

-4

xcut
i
=1*10

-4

 0.9

 0.95

 1

 1.05

 1.1

10
-9
10

-8
10

-7
10

-6
10

-5
10

-4
10

-3
10

-2

F
t(x

c
u
ti ) /F

t(n
o

 x
c
u
t)

x

Q
2
=1 GeV

2

 0.9

 0.95

 1

 1.05

 1.1

10
-9
10

-8
10

-7
10

-6
10

-5
10

-4
10

-3
10

-2

F
t(x

c
u
ti ) /F

t(n
o

 x
c
u
t)

x

Q
2
=2 GeV

2

 0.9

 0.95

 1

 1.05

 1.1

10
-9
10

-8
10

-7
10

-6
10

-5
10

-4
10

-3
10

-2

F
t(x

c
u
ti ) /F

t(n
o

 x
c
u
t)

x

Q
2
=5 GeV

5

 0.9

 0.95

 1

 1.05

 1.1

10
-9
10

-8
10

-7
10

-6
10

-5
10

-4
10

-3
10

-2

F
t(x

c
u
ti ) /F

t(n
o

 x
c
u
t)

x

Q
2
=0.5 GeV

2

xcut
i
=5*10

-3

xcut
i
=10

-3

xcut
i
=5*10

-4

xcut
i
=1*10

-4

 0.9

 0.95

 1

 1.05

 1.1

10
-9
10

-8
10

-7
10

-6
10

-5
10

-4
10

-3
10

-2

F
t(x

c
u
ti ) /F

t(n
o

 x
c
u
t)

x

Q
2
=1 GeV

2

 0.9

 0.95

 1

 1.05

 1.1

10
-9
10

-8
10

-7
10

-6
10

-5
10

-4
10

-3
10

-2

F
t(x

c
u
ti ) /F

t(n
o

 x
c
u
t)

x

Q
2
=2 GeV

2

 0.9

 0.95

 1

 1.05

 1.1

10
-9
10

-8
10

-7
10

-6
10

-5
10

-4
10

-3
10

-2

F
t(x

c
u
ti ) /F

t(n
o

 x
c
u
t)

x

Q
2
=5 GeV

5

 0.9

 0.95

 1

 1.05

 1.1

10
-9
10

-8
10

-7
10

-6
10

-5
10

-4
10

-3
10

-2

F
t(x

c
u

ti ) /F
t(n

o
 x

c
u

t)

x

Q
2
=8 GeV

2

xcut
i
=5*10

-3

xcut
i
=10

-3

xcut
i
=5*10

-4

xcut
i
=1*10

-4

 0.9

 0.95

 1

 1.05

 1.1

10
-9
10

-8
10

-7
10

-6
10

-5
10

-4
10

-3
10

-2

F
t(x

c
u

ti ) /F
t(n

o
 x

c
u

t)

x

Q
2
=12 GeV

2

 0.9

 0.95

 1

 1.05

 1.1

10
-9
10

-8
10

-7
10

-6
10

-5
10

-4
10

-3
10

-2

F
t(x

c
u

ti ) /F
t(n

o
 x

c
u

t)

x

Q
2
=20 GeV

2

 0.9

 0.95

 1

 1.05

 1.1

10
-9
10

-8
10

-7
10

-6
10

-5
10

-4
10

-3
10

-2

F
t(x

c
u

ti ) /F
t(n

o
 x

c
u

t)

x

Q
2
=30 GeV

5

 0.9

 0.95

 1

 1.05

 1.1

10
-9
10

-8
10

-7
10

-6
10

-5
10

-4
10

-3
10

-2

F
t(x

c
u

ti ) /F
t(n

o
 x

c
u

t)

x

Q
2
=8 GeV

2

xcut
i
=5*10

-3

xcut
i
=10

-3

xcut
i
=5*10

-4

xcut
i
=1*10

-4

 0.9

 0.95

 1

 1.05

 1.1

10
-9
10

-8
10

-7
10

-6
10

-5
10

-4
10

-3
10

-2

F
t(x

c
u

ti ) /F
t(n

o
 x

c
u

t)

x

Q
2
=12 GeV

2

 0.9

 0.95

 1

 1.05

 1.1

10
-9
10

-8
10

-7
10

-6
10

-5
10

-4
10

-3
10

-2

F
t(x

c
u

ti ) /F
t(n

o
 x

c
u

t)

x

Q
2
=20 GeV

2

 0.9

 0.95

 1

 1.05

 1.1

10
-9
10

-8
10

-7
10

-6
10

-5
10

-4
10

-3
10

-2

F
t(x

c
u

ti ) /F
t(n

o
 x

c
u

t)

x

Q
2
=30 GeV

5

⇒ Delineating the saturation boundary (G Milhano, P. Quiroga and J Rojo):

• Small deviations found. They indicate that other relevant physics (DGLAP, NP...?) not 
included in our rcBK approach is relevant in the excluded region. They increase with
      - decreasing xcut

      - increasing Q2 
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Summary

• Running coupling BK evolution successfully describes new combined H1+ZEUS data 
on reduced cross sections at small-x

• Fit parameters are stable after the inclusion of the new data

• Charm contribution to the cross section can be accounted for, albeit allowing a  
  smaller radius for the charm distribution in the proton than for light ones

• Steeper than MV initial conditions preferred by the fits also provide a better 
description of p+p yields measured at the LHC

• Next: analogous global fits for nuclear data, include NLO photon impact factor, 
realistic b-dependence...

• Systematic exploration of the saturation boundary ongoing

Thanks!

Parametrizations of the proton-dipole amplityde available at
http://www-fp.usc.es/phenom/software.html
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BACK UP SLIDES
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• The dominant contribution to the evolution is given by the running term

S [S]
R [S]

∂S

∂Y
= R [S]− S [S]

• Balitsky’s separation scheme minimizes the role of the subtraction term w.r.t. to 
  KW’s one
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